Winner of Creative Problem Solving Award, Certified BigCommerce Partner, B2B Specialized Partner.
Cyber security and fraud prevention are some of the most critical elements of eCommerce operations. Customers entrust eCommerce businesses with their data; they should safeguard sensitive customer data and live up to the trust to retain customers and maintain their reputation.
The greatest threat to eCommerce operations comes from eCommerce fraud, including unauthorized transactions, payment fraud, credit card scams, and identity theft, leading to financial losses and damage to the reputation of the eCommerce company.
The risk of eCommerce fraud and the sophistication of tools used by bad actors indulging in fraudulent activities increase with the growth of the eCommerce sector. At this juncture, it is indispensable to look beyond the traditional fraud detection methods and incorporate AI fraud detection and prevention. By leveraging AI systems, businesses can protect financial transactions, safeguard customer data, and foster a secure online shopping environment.
This article explores the traditional eCommerce fraud detection and prevention methods, their shortcomings, and how Machine Learning and Artificial Intelligence address these issues. It also details how the AI fraud detection system works to bolster the fraud detection strategy of eCommerce businesses.
Traditional eCommerce security and fraud detection involves the use of different techniques, including:
Traditional fraud detection cannot scale with increased transaction volume, mainly because manual reviews require more human resources, resulting in higher costs and more human errors. It is impractical for an eCommerce company like Amazon, with a massive number of orders and transaction volume, to keep adding employees to review the anomalies in transactions and user behavior manually.
Further, there are always exceptions to rule-based systems. For instance, you can force a manual review for every transaction with a higher billing value than the average from that particular user account. However, customers may purchase more on rare occasions, like on a black Friday or during the holiday season. So, rule-based systems can trigger a higher rate of false positives and struggle to detect eCommerce fraud in such situations.
Traditional fraud detection and prevention also come with adaptability issues. Bad actors increasingly employ the latest technologies and tactics to commit eCommerce fraud. Moreover, the nature of threats is also evolving. Traditional methods cannot detect and prevent emerging threats and fraudulent activities designed to slip through the fraud detection system.
Artificial Intelligence and Machine Learning have revolutionized eCommerce fraud detection and prevention strategies. They analyze vast data sets to identify patterns of various cybersecurity threats, attacks, scams, fraudulent transactions, identity theft, and impersonation and detect anomalies, enhancing the accuracy of fraud detection systems.
They address the shortcomings of traditional fraud detection systems by:
AI reinforces and improves eCommerce security and fraud detection and prevention in the following ways.
Anomalies in transactions, such as large purchases or multiple transactions in quick succession using different cards, indicate potential eCommerce fraud. The best way to improve fraud detection accuracy in this scenario is by scrutinizing the customer’s historical data for purchase and transaction patterns and learning their spending behaviors. The AI algorithm subjects every transaction to scrutiny and analyzes vast amounts of transaction data in real time to detect patterns that indicate transaction fraud. This approach enables instant identification of unauthorized transactions, protecting businesses and consumers.
AI systems look for deviations in eCommerce website user behavior in real time to detect suspicious activities. They assess keystrokes, mouse movements, and navigation patterns to identify deviations from established behavior and detect account takeovers or identity theft by bad actors. AI learns from all these user interactions continuously and strengthens its ability to detect subtle changes that signal fraudulent activities.
AI compares every transaction in real time with typical behaviors and detects deviations in transaction patterns. The AI algorithm uses supervised learning on labeled data, i.e., transaction data labeled as legitimate and fraudulent, and detects anomalies by comparing transactions with the labeled data. Unsupervised learning identifies anomalies by detecting unusual transaction patterns without prior labeling. With supervised and unsupervised learning, the AI algorithm classifies transactions as normal or abnormal, based on their properties. This method significantly improves the effectiveness of the fraud prevention strategy and ensures payment security by even identifying emerging threats that are not pre-defined.
Predictive models can identify potential fraud by learning from historical data, identifying patterns that indicate fraud risks, and assigning risk scores to transactions. It enables eCommerce businesses to anticipate fraud risks and proactively mitigate them before they can cause a massive financial impact.
Malware can penetrate systems through messages and mail and infect systems. These mediums of communication also act as platforms for sophisticated phishing attempts. Scanning these communications and flagging malicious content is indispensable for eCommerce security. Natural Language Processing tools can identify these threats by detecting suspicious language patterns in potentially fraudulent communications. For instance, these tools flag emails that request personal information or payment details, enhancing fraud detection and prevention.
Today, most eCommerce businesses have an omnichannel strategy, offering sales, marketing, and support across multiple channels. They also support various platforms like web, mobile, and social media.
Fraud patterns and modus operandi of the bad actors may differ on each channel and platform. The methods of fraud may spread from one channel or platform to another. AI-powered cross-channel analysis analyzes data across multiple platforms and channels. It consolidates the learning from isolated datasets from these channels and platforms to detect fraud patterns holistically. By cross-referencing data from these platforms and channels, these AI systems detect fraud everywhere with great consistency and accuracy.
The threats to eCommerce security and cyber attacks have become more complicated with time. Attacks do not necessarily come from a single point. Bad actors may collaborate and form networks and fraud rings to conduct concerted attacks on eCommerce sites.These complicated attacks can happen on a large scale and may slip through conventional eCommerce fraud detection methods.
Artificial Intelligence-driven graph analysis examines relationships within networks to identify fraud rings and collusive behaviors. It uncovers complex schemes involving multiple bad actors working together to commit fraud, by mapping connections between transactions, accounts, and entities.
AI-driven data fusion enables consolidated user profiles by integrating all the relevant data from sources, including transaction histories, customer profiles, and external databases. It provides a holistic view of user behavior and transaction patterns, enhancing the accuracy of fraud detection and the detection of anomalies and potential fraud risks.
AI reduces manual reviews and human errors by automating repetitive cybersecurity tasks, including network traffic monitoring, analyzing logs, and managing alerts. It significantly improves the speed of fraud detection and prevention by enabling quicker responses to potential eCommerce fraud and security threats.
AI-powered systems help identify vulnerabilities in eCommerce systems and promote preparedness to manage potential threats, by simulating various attack scenarios. This enables eCommerce businesses to understand different attack vectors, mimic potential cyberattacks, test security measures, develop more robust security protocols, strengthen their defenses, and prepare for real-world threats.
AI and Machine Learning enhance the fraud detection and prevention strategies of eCommerce platforms and ensure eCommerce security. They protect businesses from financial losses and provide far-reaching benefits to eCommerce businesses in earning customer trust and fostering long-term growth.
Artificial Intelligence helps detect eCommerce fraud by analyzing large datasets to identify suspicious patterns, flagging potential fraudulent transactions, and using Machine Learning models to improve detection accuracy.
AI’s role in fraud detection includes identifying anomalies, flagging suspicious activities in real-time, and leveraging Machine Learning algorithms to predict and prevent fraudulent behavior, enhancing overall security measures.
Cybersecurity involves protecting systems from cyber threats. On the other hand, AI-enhanced fraud detection uses advanced algorithms to identify and mitigate fraudulent activities.
Types of AI used in cybersecurity include: